Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Data preservation is a mandatory specification for any present and future experimental facility and it is a cost-effective way of doing fundamental research by exploiting unique data sets in the light of the continuously increasing theoretical understanding. This document summarizes the status of data preservation in high energy physics. The paradigms and the methodological advances are discussed from a perspective of more than ten years of experience with a structured effort at international level. The status and the scientific return related to the preservation of data accumulated at large collider experiments are presented, together with an account of ongoing efforts to ensure long-term analysis capabilities for ongoing and future experiments. Transverse projects aimed at generic solutions, most of which are specifically inspired by open science and FAIR principles, are presented as well. A prospective and an action plan are also indicated.more » « less
-
This article presents constraints on dark-matter-electron interactions obtained from the first underground data-taking campaign with multiple SuperCDMS HVeV detectors operated in the same housing. An exposure of is used to set upper limits on the dark-matter-electron scattering cross section for dark matter masses between 0.5 and , as well as upper limits on dark photon kinetic mixing and axionlike particle axioelectric coupling for masses between 1.2 and . Compared to an earlier HVeV search, sensitivity was improved as a result of an increased overburden of 225 meters of water equivalent, an anticoincidence event selection, and better pile-up rejection. In the case of dark-matter-electron scattering via a heavy mediator, an improvement by up to a factor of 25 in cross section sensitivity was achieved. Published by the American Physical Society2025more » « less
An official website of the United States government
